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1 Introduction

Many turbulent flows of practical importance are characterized by curved streamlines: e.g., flow through

turbines, curved pipes and channels, flows over wing sections and swirling flows. The qualitative effects of

streamline curvature on turbulence are known from direct numerical simulations and experiments. Concave

curvature, which is characterized by decreasing angular momentum with radius, gives rise to Taylor-Gortler

instability in the flow resulting in increased velocity fluctuations and an augmentation of turbulence.

Convex curvature, wherein angular momentum increases with radial distance, attenuates the Tollmien-

Schlichting waves in boundary layers resulting in a decrease of turbulence. The quantitative effect of

streamline curvature on turbulence is generally more profound than can be explained by a simple scaling

analysis (Bradshaw [1], [2], Muck et al. [3] and Hoffman et at. [4]). Therefore, accurate modeling of the

effect of streamline curvature on turbulence is very important.

Currently, the full Reynolds stress closure approach Offers the most accurate means of calculating curved

flows. Despite advances in computer capabilities, the Reynolds stress closure is still computationally too

expensive for many engineering calculations of complex flows. Current engineering calculations employ, at

best, two-equation turbulence models. At the two-equation level of turbulence modeling, algebraic Reynolds

stress models derived from the Reynolds stress transport equation offer the most sophistication. In slowly

evolving turbulent rectilinear flows, which form an important class of engineering flows, the algebraic

Reynolds stress model can be considered as the solution of the Reynolds stress transport equation. In these

flows, the algebraic Reynolds stress model offers the sophistication of the Reynolds stress closure approach

at a much smaller computational expense. While being adequate for non-curved flows, current two-equation

models are not accurate to even within engineering accuracy for curved flows. The development of an

algebraic Reynolds stress model that is the formal solution to the transport equation in slowly evolving

curved flows would constitute an important contribution and such is the intent of this paper.



1.1 Algebraic Reynolds stress modeling

The derivation of an algebraic Reynolds stress model from the differential transport equation is possible

in the weak- or structural- equilibrium limit of turbulence where the anisotropy of Reynolds stress

uiuj 2
bij =- 2K 5 _ij (1)

is approximately constant following a fluid particle:

Obij

0---_+ Uk(bij),k _ O, (2)

where, uiuj is the Reynolds stress, K is the turbulent kinetic energy, _ij iS the Kronecker delta and the

comma in the subscript indicates total derivative (including Christoffel symbol terms) with respect to the

index direction. (Throughout this paper, an upper case symbol indicates the mean of a quantity and lower

case represents the fluctuation from the mean.) This weak-equilibrium assumption was first invoked by

Rodi [5] and the accuracy of the algebraic Reynolds stress model for a given flow depends upon the degree

of validity of the assumption in that flow.

The Reynolds stress anisotropy evolution equation, on invoking the weak-equilibrium assumption, re-

duces to a set of nonlinear algebraic equations. Atl of the algebraic modeling methodologies to date (e.g.,

Rodi [5], Pope [6], Taulbee [7], Gatski and Speziale [8] and Girimaji [9]) attempt to solve these equations

for the Reynolds stress anisotropy. The algebraic Reynolds stress models can be classified as implicit or

explicit. The implicit models ([5], [6], and [7]) solve the non-linear equations numerically, in an iterative

fashion, which could (i) be computationally expensive and (ii) converge to non-physical real roots leading

to serious errors in the calculations. The explicit algebraic model of Gatski and Speziale [8] is an analyti-

cal solution to the algebraic equations linearized about the equilibrium state of homogeneous turbulence.

While this model works quite well near equilibrium, when used away from equilibrium (as most practical

models invariably are), it leads to inconsistency between the assumed equilibrium value of the Pie ratio

and the derived value of the Reynolds stress anisotropy (Girimaji [9]). The algebraic model of Girimaji

[9] is obtained by analytically solving the algebraic equations for anisotropy in their fully nonlinear form;



this modelis both fully explicit and self-consistent. This model expression is the exact fixed point solution

(i.e., in the weak equilibrium limit) of the Reynolds stress transport equation in two-dimensional mean

flows for a variety of quasilinear pressure-strain correlation models.

The Rodi weak-equilibrium assumption and circular flows. In fully developed curved flows with

circular streamlines, the anisotropy of Reynolds stress does not change following a streamline (Eskinazi

and Yeh [10], Moser and Moin [11]):

where x_ is a streamline coordinate. For curved flows, it is easily seen that the Rodi weak-equilibrium

simplification (equation 2) is inconsistent with the above observation (equation 3). The inconsistency is

most easily seen in the streamline coordinate system where the Rodi assumption implies

0b j 0b j
0---_- + U_ = Christoffel symbol terms _ 0. (4)

Therefore, the Rodi weak-equilibrium assumption and the algebraic Reynolds stress models derived using

it are not suited for curved turbulent flows.

Streamline weak-equilibrium assumption for curved flows. Some authors (e.g., Rodi and Scheurer

[12] designated RS, and Younis [13]) have hypothesized that, in curved flows, the anisotropy following a

streamline is constant (equation 3). This streamline weak-equilibrium assumption is used to reduce the

anisotropy transport equation to a set of non-linear algebraic equations. The resulting ARSM has yielded

somewhat improved performance for curved flows. However, the streamline weak-equilibrium assumption

(equation 3) depends on the streamline direction, which in turn depends on the fluid velocity. In general,

the fluid velocity is not Galilean invariant. As a consequence, the streamline direction and, therefore, the

streamline weak-equilibrium assumption is not Galilean invariant (Girimaji [14], Fu et al. [15]). Fu et al.

suggest that the Galilean variance may be the reason for the poor performance of ARSM in their curved

flow computations.



Thecurrentstatusof the algebraic stress model for curved flows is the following: The streamline weak-

equilibrium assumption (equation 3) which is suitably sensitive to curvature is not Galilean invariant. The

Rodi weak-equilibrium assumption (equation 2) is Galilean invariant but not properly sensitive to streamline

curvature.

Present work. The first and the most important objective of this paper is the construction of a new

weak-equilibrium hypothesis that is (i) Galilean invariant, (ii) properly sensitive to streamline curvature,

and (iii) equivalent to the Rodi assumption in flows with rectilinear streamlines. The second objective is

to derive an algebraic model expression for the Reynolds stress anisotropy that is (i) fully explicit, (ii)

self-consistent, (iii) Galilean invariant, and (iv) sensitive to streamline curvature.

The remainder of the paper is organized as follows. The new weak-equilibrium assumption is proposed

in Section 2. The Reynolds stress transport equation is reduced to a set of nonlinear algebraic equations in

Section 3. A fully explicit and self-consistent algebraic model expression for anisotropy is also presented.

The model validation is performed in Section 4 and we conclude in Section 5.

2 Galilean invariant weak-equilibrium assumption

Invoking the weak-equilibrium assumption in the streamline coordinate system (e_) is ill-advised because

the basis of the streamline coordinate system is the velocity vector which is not Galilean invariant. Unlike

velocity, the acceleration vector du is Galilean invariant. If the weak equilibrium assumption is made in

a coordinate system that is defined using the acceleration vector, a Galilean invariant model will result.

The derivation given in this section employs three coordinate systems: acceleration coordinate system eT,

streamline coordinate system e_, and an arbitrary computational coordinate system ei. The acceleration

and the streamline coordinate systems are denoted by superscripts a and s respectively.

The acceleration coordinate system e a is defined as follows. Let a be the unit vector in the direction

of acceleration (_U). Let e_ be along a and let e_ be orthogonal to a on the plane of a. Finally,

define e_ normal to the plane of a-field (unit binormal vector) completing an orthogonal right handed
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system.In general,the streamlineandthe accelerationcoordinatesystemsaredifferent. However,when

the meanfluid trajectory is circular, the acceleration(radial direction) is perpendicularto the velocity

(tangentialdirection):the unit vectorsof theaccelerationandthestreamlinecoordinatesystemscoincide.

The computational coordinate system is an arbitrary orthogonal reference system in which the model

calculations are performed. Our objective is to derive the final form of the model in the computational

coordinate system. If a flow with circular streamlines is computed in a cylindrical coordinate system, the

acceleration, streamline, and computational coordinate systems will coincide.

2.1 The new weak-equilibrium hypothesis

If the streamlines are perfectly circular, then the e_ coordinate system will coincide with the streamline

coordinate system, leading to

Ob j
+ = O---i-+ = o. (.5)0--7-

When the fluid motion is non-circular in the computational coordinate system ei (i.e., velocity and accel-

eration are not orthogonal), we can perform a Galilean transformation to a new moving coordinate frame

in which the fluid acceleration is unchanged (since it is Galilean invariant) while the direction of the fluid

velocity changes. If the reference frame velocity is chosen appropriately, the fluid velocity and acceleration

can be made orthogonal to one another. Clearly, this frame transformation is a function of space and time.

In this new coordinate frame, the fluid motion is locally circular. Locally, the radial, tangential, and axial

directions of this circular flow are the e_, e_, and e_ directions, respectively. Based upon our knowledge

of circular flows (equation 5), we now hypothesize that along these coordinate directions the anisotropy of

Reynolds stress is invariant leading to:

(6)

Let us investigate how the above hypothesis satisfies the three required criteria listed in the Introduction.

1. The hypothesis depends only upon the direction of the acceleration vector and, hence, is Galilean

invariant.

5



2. For circular flows, it is clear (equation 5) that anisotropy is invariant following the streamline.

3. In the absence of streamline curvature, the Lagrangian velocity is unidirectional; the direction of

acceleration is invariant. The acceleration coordinate system can be taken to be a Cartesian coor-

dinate system. Then, the present simplification (equation 6) reduces to the Rodi weak-equilibrium

assumption (Criterion 3).

For these reasons, the hypothesis given in equation (6) appears to be a reasonably sound foundation for

building an algebraic Reynolds stress model for general curved flows.

Hypothesis in the computational coordinate system. Computations are seldom performed in the

acceleration coordinate system e_. For the new weak-equilibrium assumption to be useful, it is necessary to

express equation (6) in the arbitrary orthogonal computational coordinate system (x, t) whose unit vectors

are ei. If T_p is the transformation matrix between the acceleration and the computational coordinate

systems, we have the following relationships:

a

e i = Tivep; ep = Tipe_; U? = TipUp

bi_j = TipTjqbpq; TipTjp = (_ij.

(7)

The elements of the transformation matrix are known once the acceleration vector is known in the ei

coordinate system. If the mean flow is two-dimensional (many flows of practical interest fall into this

category), Tip can be easily calculated. Letting el and e2 be the coordinates along which the flow varies.

and e3 be the homogeneous direction, we have

a

e I ---- ale1 4-a2e2,

a --
e2 -- --a2el + ale2,

(8)

a

e 3 = e3,



where a is the unit vector in the direction of acceleration. For this case, T is given by

T/j

al a2 0 )
--a2 al 0 .

0 0 1

The anisotropy tensor can now be expressed as

b - biajeae] - bijeiej. (9)

Invoking the new weak-equifibrium assumption (6), we can write

Tra 0 ijl_a_a ba [OeiejOb Ob _ [ Ob_j ba _ a
o--T+ u; ox? _ ot + '_ -_x7j_ _J + -'_ _ot

a a Dea.e _
bo [Oeiej ?a--_ --3
iJ_--gi- + __ Ox7 ]

Oeae; Oe_e;

= b_j[-_-- + u_--_T_].

rTa Oe_e_ 1 (10)
+ _ t Ox? J

The invariance property of Uz(O/Oxl) is used to write the last equality in the above equation.

Using equation (7) we can write,

e_e_ = TipTjqepeq. (11)

Define the temporal and spatial derivatives of the computational coordinate system as follows:

Oep . 0ep(
rpq = --_-(.)eq; rplq = Ox l .)eq, (12)

where, (.) denotes inner product. Like the Christoffel symbol, F is a coupling function. Now we can write

Oe_e; Oeae; .Oepeq _ Oepeq. ff._0--_. + UI Oxt - TipTjq[-_-- + Ul--_Xl] + epeq[ (TipTjq) + UI (TipTjq)] (13)

d

= epeq[Ti_rjq(F,p + UtF_lp) + TwTj_(F, q + UtF,lq) + --_(TwTjq)] ,

where d/dt = (O/Ot) + Ul(O/Oxl).

By employing equation (13) and the following identities



the weak-equilibriumapproximation(equation10)cannowbe written in the computationalcoordinate

system:

Ob Ob dTip dTjq

0-_ + Ul-_xt = epeq[b,.q(Frp + UIFr/p) + bpr(Frq + u_r_tq) + brsTirTjs(Tjq--_'[- + Tip"-'_)]. (15)

In component form, the weak-equihbrium approximation in the computational coordinate system is

Obpq dTip dTjq
Ot + Udbpq),_ = brq(Frp + u_rr_p) + bpr(F_q + U_L_q) + b_sT,_Tjs(Tjq---gi-- + T_,---_) (16)

! !

= bp,.f_,.q + bq,.f_,.p.

In the above equations, f_'rs is an antisymmetric tensor given by

_'_s= F_s+ u_r_t_+ Tq_dT_dt " (17)

If the computational coordinate system is time-invariant, then F_ = 0. If the computational coordinate

system is Cartesian, then Frl_ = 0. If the mean flow streamline is perfectly circular and the streamline

coordinate system is used, then T_s = _, leading to d/dt(Tr_) = O.

3 Model development

In this section, the new weak-equilibrium assumption is employed to develop an explicit algebraic Reynolds

stress model that is appropriate for curved flows.

The exact Reynolds stress transport equation in an arbitrary inertial reference frame is given by

O'-ff i U j

0-_, + Uk(ui----_)'k + (_),k = Pij + _ij + ¢Pij + l)ij. (18)

The terms, respectively, are the time ra.te of change, advection, turbulent transport, production (Pij),

dissipation (eij), pressure-strain correlation (¢ij), and pressure-viscous diffusion (Z)ij) of the Reynolds

stress:

Pij = --UiukUj,k -- u---_Ui,k; Eij = 2uU_.kUj,k (19)

7)_j = [-VAT@ - N-q,5, + uu-_ _],_.



The production and dissipation rate of turbulent kinetic energy are, respectively, P = _Piil and e = l_ii.

The dissipation rate tensor can be split into its isotropic and deviatoric parts: Eij = _E6ij + dij. The

transport equation for the anisotropy tensor in non-dimensional time is derived from equation (18) (see

Girimaji [9]):

Obij P 2 2 b 1 II* .
Ot'- + Ul(bij)d + bij(-_ - 1) = -SSij - (bikSkj + Sikbkj - 5 mnSm_ij) -- (bikwjk + bjk_ik) + 2 ij (20)

In the above equation the following normalizations have been effected using the eddy turnover time:

E 1K

Off = -i_Ot; Sij _ 2 e

1K

_ij - 2 E (u_,j - u_,_);

- ---(ui,j + uj,_); (21)

H_'_= 7( i_ - d_j)

Invoking the weak equilibrium assumption (equation 16), the anisotropy transport equation in the compu-

tational coordinate system can be reduced to the following set of nonlinear algebraic equations:

bij( P l) = 2 2 b 1H *
- --_Sij - {bikSkj + Sikbkj - -_ m_Sm_6ii) -- [bik(_jk -- Qjk) + bjk(wik -- Qik)] + _ ij, (22)

where,

K !

l_Ts = --f_Ts. (23)
5

We consider the following type of quasilinear pressure-strain model (that includes all linear models):

• (- 2bIIij = -(C O + C_ )bij + C2Sij + C3(bikSjk + bjkSik - 5 mnSmn6ij) + C4(bikwjk + bjkwik), (24)

where the C's are numerical constants. Many of the current pressure-strain correlation models are special

cases of equation (24) near weak-equilibrium. Using this model, the nonlinear set of simultaneous equations

(22) for the anisotropy components is written in the following compact form:

2
bij[L ° - L]bmnSm,_] = L2Sij + L3(bikSkj + Sikbkj - -_bmnSmn6ij) + L4(bikWjk + bjkI/I_.k), (25)

where,

C2 2 C3 C4
L1° - CO 1; LI:C 1 .4-2; L2_- .... L 3 _ 1; L4- 1. (26)

2 2 3' 2 2
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The total effectivevorticity I4/_jisgivenby

2
Wij -- wij + C4 - 2 _ij" (27)

This implies that the effect of streamline curvature is to modify the flow vorticity and, hence, 12ij is called

the vorticity modification tensor. The effect of coordinate frame rotation also appears via a modified

vorticity term (Gatski and Speziale [8], equation (26)). However, there is a major difference between the

two phenomena: whereas, solid body rotation of the coordinate frame modifies flow vorticity by the same

amount everywhere, the modification due to streamline curvature can vary with space and time.

The objective now is to solve equation (25) for bij. The solution - in terms of the constants L, strain

rate Sij, and effective vorticity l_t_j - will produce the algebraic Reynolds stress model.

3.1 Fully-explicit solution

The set of nonlinear algebraic simultaneous equations for the anisotropy of Reynolds stress has the same

form (equation 251) with or without streamline curvature. The only difference in the two cases would be

the lack of vorticity modification in the rectilinear streamline case. For the case of straight streamlines, the

solution of equation (25) has been derived by Girimaji [9]. The solution procedure presented in Girimaji

[9] departs from those previously given in the literature by treating the algebraic equations in their full

nonlinear form. The final solution, following a brief description of the derivation procedure, is now given.

Representation theory provides the most general tensorial form of the anisotropy tensor in terms of the

strain and rotation rate tensors. For three-dimensional flows, the functional form is too cumbersome to be

of practical value (Gatski and Speziale [8]). It is customary to restrict consideration to the more tractable

case of two-dimensional mean flows and use the resultant functional form of the Reynolds stress expres-

sion as a model in three-dimensional flows also. For two-dimensional mean flows, the general admissible

representation of the anisotropy tensor is given by

bij = GISij + G2( SikWkj - WikSkj) + G3( SikSkj - _ SmnSrnn(_ij). (28)
• 3

(The tensor I4_kWkj, which is also permitted by representation theory, is not admitted for it is inconsistent

10



with knownphysics,seeGatskiand Speziale[8] for details). Theunknowncoefficients(eddy viscosities),

G1 - G3, are functions of the constants of the pressure-strain model and the invariants of the strain and

rotation rate tensors. In incompressible flows, these invariants are

711 ---- SijSij; 7]2 = _/Wij|¥ij. (29)

It can be easily shown that the coefficient G1 is related to the turbulent eddy viscosity coefficient, C,,

commonly used in K-e modeling:

Cu = -G1. (30)

The objective now is to determine the unknown coefficients by ensuring that the representation of

anisotropy (28) satisfies equation (25). Equation (25) is nonlinear and has multiple roots. As a result, as

demonstrated in Girimaji [9], G1 has multiple representations. The only physically meaningful solution of

equation (25) is selected by requiring that G1 be (i) real, (ii) a continuous function of its parameters 711

and 7]2, and (iii) consistent with known physical behavior (Girimaji [9]):

/ L°L_/[(L°)2+ 2_2(L4)2],

0 0 2 2 2 2
LIL2/[(L1) - gT]l(L3) +2712(L41 ],

p b _ bal = -5+(-_+v_) +(-_- v_)_,
E -a _ 0-3 + 2V/-_c°_ (g),
E _-a 0 2r

-3 + 2y-yc°s(5 + -5),

for 711= 0;

for L 1 = O;

for D > O;

for D < 0 and b < O;

for D < 0 and b > O.

The various quantities in the above equation are given by

(31)

2Lo zoL_
p -- --" r-- -"

-- 7115 1 ' (7]iLl) 2'

1 o 2 27]1 (L3)2
q = (rhLl)i[(L1) + 711LIL2- o + 2712(L4)2];

a = (q--_--); b= (2p 3-9pq+27r);

b2 a 3 -b/2

D = -_ + _; _o40) - _.

(32)

The other two coefficients G2 and G3 can be calculated as follows:

-L4G1 2L3G1

G2 = L1_ 7]_/;IG1 G3 Lo1 _ 7]iLIa I (33)

11



Theturbulent diffusivity coefficientCg (= -Gz) is plotted as a function of rh and 7/2 in Figure 1. It is

easily seen that this coefficient is a well-behaved and non-singular function of 771and r/2. The value of C_

typically used in K-_ modeling is 0.09. It is seen from this figure that for moderate values of _h and rj_ the

present model predicts a value of Cz close to 0.09. At very high values of strain or rotation rate, the C_

value tends to zero. For a given strain rate (rh), C, decreases with increasing rotation rate (r/z). The two

other coefficients are also well-behaved functions of r/1 and r/_ [9].

The expression for the anisotropy of Reynolds stress is fully explicit since the production to dissipation

ratio (appearing as b,,_Sm,_ in equation 25) is not treated quasistatically as done by Rodi [5], Pope [6] or

Taulbee [7]. Also, this expression is self-consistent even far from equilibrium since equation (25) is solved

in its fully nonlinear form, rather than by linearizing the equation about the equilibrium value as done

by Gatski and Speziale [8]. The advantages of the current fully explicit model over previous models are

discussed in Girimaji [9].

4 Discussion and comparison with experiment

In this section, we first discuss the validity of the algebraic Reynolds stress methodology in general curved

inhomogeneous flows. Next, we discuss the similarities and differences between the present and the stream-

line weak-equilibrium (equation 3) assumptions. Finally, the explicit algebraic Reynolds stress model is

examined in the simplest of curved flows - the curved homogeneous shear flow. The model evaluation is

performed in two parts: comparison with other models; and validation against the homogeneous curved

shear flow experimental data of Holloway and Tavoularis [17]. The testing of the model in more complex

curved flows has been deferred to the future.

4.1 Validity in inhomogeneous flows

The derivation presented in the previous section is fully valid only in homogeneous flows. In inhomogeneous

flows, upon the invocation of the weak-equilibrium assumption, the Reynolds stress anisotropy evolution

equation is still not algebraic due to the presence of the viscous and turbulent transport terms. Therefore

12



the algebraicReynoldsstressmethodologyis formallyvalid only whenthe transport termsarenegligible

andtheanisotropyevolutioniscompletelydeterminedbythelocalprocessesof production,pressure-strain

correlation,anddissipation.In highReynoldsnumberflows,the viscoustransportis generallynegligible.

Weestimatethe importanceof the turbulent transportin curvedflowsusingthe experimentaldata of

Muck et al. [3] and Hoffman et al. [4], and the direct numerical simulation data of Moser and Moin [11].

Convex curvature. The turbulent kinetic energy and shear stress budgets measured in convexly curved

boundary layer indicate that the 'turbulent transport (by triple products and pressure fluctuations) and

advection are both considerably decreased by the application of curvature' (Muck et al. [3]). Throughout

the convexly curved boundary layer, the production and dissipation are much larger in magnitude than the

other terms and nearly balance each other completely. In the curved channel flow of Moser and Moin [11]. in

the convex portion, the production, dissipation, and pressure-strain correlation of normal stresses are much

larger than the turbulent transport. The shear stress evolution is predominantly determined by the balance

between production and pressure-strain redistribution. It appears that the neglect of turbulent transport

is a better approxhmation in convex flows than in straight flows. Therefore, the algebraic Reynolds stress

methodology is at least as valid in convex flows as it is in straight flows.

Concave flows. The concave boundary layer data of Hoffman et al. [4] and the curved channel flow

data of Moser and Moin [11] indicate that the turbulent transport terms are larger in concave flows than in

straight flows. However, except at the very edge of the concave boundary layer, the production, dissipation,

and pressure strain redistribution continue to be larger than the turbulent transport terms. Therefore, the

algebraic Reynolds stress methodology is less valid in concave flows, but still adequate.

In the near wall region, for up to 20 wall units, the structure of the velocity field in convex and concave

flows are identical to that of a straight flow ([3], [4], [11]). In this region, although turbulent transport is

large, the production and dissipation are extremely large and dominate the flow dynamics. This appears

to indicate that the near-wall treatment in curved flow calculations can be the same as in straight flows.

13



4.2 Present vs. streamline weak-equilibrium assumption

Apart from the fact that the present assumption is Galilean invariant whereas the streamline weak-

equilibrium assumption is not, there are important physical differences between the two models. As

mentioned earlier, the present weak-equilibrium assumption leads to the following vorticity modification:

dTtj (34)f_j(present) = Fij + Ulrilj + Tti --_ •

The term Fij accounts for the unsteadiness of the curved flow, UIFilj arises due to the curvature of the

computational coordinate system, and the last term on the right hand side is due to the changing direction

of the acceleration (with respect to the computational coordinate system). It can be shown that the

vorticity modification due to the streamline weak-equilibrium assumption is

f_j(streamline) = Ulrilj. (35)

For steady circular flows being computed in the cylindrical streamline coordinate system, the two weak-

equilibrium assumptions are equivalent. However, the streamline weak-equilibrium model cannot account

for the unsteadiness or varying direction of the acceleration. The latter feature is very important in steady

curved (non-circular) flows. For example, in the transition from a straight to a curved channel turbulent

flow (or vice-versa) the term containing Tij is likely to be very important. One of the most important

deficiencies of the streamline weak-equilibrium model is its inability to capture the recovery of turbulence

from imposed streamline curvature, Rodi and Scheurer [12]. The previous curved flow models have also

been shown to be inadequate in swirling flows. In these cases, the present model can be expected to

perform better.

4.3 Model validation

For the sake of simplicity, in this paper, we restrict the model testing to curved homogeneous shear flow

which is initially isotropic. The model is validated against other models and experimental data. This flow

has circular streamlines and is characterized by the normalized shear rate and the curvature factor defined,

14



respectively',as

S=----" C a,=( . (36)
07" g '

In these definitions. U is the tangential velocity and r is the radial coordinate. Let the 1, 2, and 3 directions

correspond to the radial, tangential, and axial directions respectively. In this cylindrical coordinate system

the only non-zero Christoffel terms are

1 1
F122 =-; r_,1 = --. (37)

r r

The non-dimensional mean strain-rate and vorticity are given by

0 1 O)
S_j= 1.S(1_C/) 1 0 0

000 1(o_1o); oa{i = _S(I+C/) 1 0 0 . (38)
0 0 0

The vorticity modification tensor is given by

010)-1 0 0 .

0 0 0
(39)

By adding equation (39) to the mean flow vorticity tensor we obtain the non-dimensional total vorticity,

0 -1 O)
l¥ij = S[1 + CI + MCI] 1 0 0 , (40)

0 0 0

where, M is the vorticity modification factor due to streamline curvature and is given by

4

M- C4-2" (41)

In all of the major pressure-strain correlation models, the value of C4 is less than two. Therefore, when the

streamline curvature is convex (CI > 0), the effect of curvature is to augment the vorticity. As was shown

in the previous section, for a given strain rate (r/l), an increase in vorticity (r/2) results in a decrease in

C z. This decrease in C, is responsible for the additional inhibition of turbulence over that occurring due

to reduced production (caused by diminished strain rate due to convex curvature). For concave curvature

(C/ < 0), the total vorticity is lower resulting in a higher C,,, and consequently higher turbulence levels. In

Figure 2, C_ is plotted as a function of curvature factor (Ca,) for a given value of S = 6 which corresponds
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to its equilibriumvaluein rectilinearhomogeneousshearflow. In this calculationof C, and all the results

presented below, the linearized version of the pressure-strain correlation model of Speziale et al. [16] is

used. It is seen from the figure 2 that the eddy viscosity is a stronger function of convex than concave

curvature. This is consistent with the observation of Muck et al. [3] who find that turbulence reacts more

quickly to convex than concave curvature.

Comparison with other models. Algebraic Reynolds stress models provide an inexpensive alternative

to Reynolds stress closure models (RSCM) at the cost of lesser physical accuracy. The closer an algebraic

model calculation gets to RSCM calculation, the better the algebraic model. Here, we evaluate the following

explicit algebraic models against RSCM calculations: (i) the present curve-sensitive ARSM based on

the new weak-equilibrium assumption, CARSM; (ii) the ARSM of Girimaji [9] based on the Rodi-weak

equilibrium assumption, ARSM(G); (iii) the ARSM of Gatski and Speziale, ARSM(GS); and (iv) the

standard K-E model.

In Figure 3, we compare the computations from the various models in the stabilizing curvature case

(C/ = 0.15 and S(t = O) = 2.0). The anisotropy components bm and b12 are compared in Figure 3a. The

RSCM exhibits a gradual growth from zero values of these components to bm= 0.188 and b12 = -0.0116

at the end of the simulation. In rectilinear shear flow, the equilibrium value of b12 is approximately -0.157.

Therefore, in the present case the turbulent shear stress level is much smaller, indicating a suppression of

turbulence production. The algebraic model computations exhibit a sudden jump, on the onset of curved

shear, followed by gradual evolution. The CARSM, after a short initial phase (St _ 2), reproduces the

behavior of RSCM very accurately. The other models do not reproduce the RSCM results well at all.

The performance of ARSM(G) and ARSM(GS) is somewhat better than that of the K-s model. The K-_

model is, of course, insensitive to curvature and indicates no suppression of turbulence due to stabilizing

curvature. The P/_ ratio predicted by the various models is shown in Figure 3b. The RSCM and CARSM

are again indistinguishably close after the initial phase. The P/E at the end of the simulation is about

0.312 (as compared to 1.88 for rectilinear homogeneous shear turbulence), clearly implying a suppression
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of turbulence.Theothermodelsarenot closeto RSCMandgenerallyindicatea lesserdegreeof turbulence

suppression.

In Figure 4, the comparisonin the destabilizingcurvaturecase(C/ = -0.15 and S(0) = 6.0) is

presented. The RSCM calculations show a clear augmentation of turbulence reflected by higher values of

P/s and Ib121. Again, the present CARSM captures RSCM behavior extremely well. The other models do

not duplicate the RSCM behavior as accurately.

From the above figures it is quite clear that the present CARSM is an excellent alternative to RSCM for

curved homogeneous shear flows. The other algebraic models while not too bad for destabilizing curvature

perform poorly for stabilizing curvature.

Validation against experimental data. The CARSM is now validated against the curved homoge-

neous shear flow data of Holloway and Tavoularis [17]. The experimental equilibrium values of b12 and

P/s ratio are compared against CARSM calculations for various curvature factors. In order to isolate the

present model comparison from the well-known shortcomings of the dissipation equation (Speziale et al.

[16]), the experimental value of the e-dependent normalized shear rate is used. The normalized shear rate

values taken from the experiment for various curvature factors are given in Table 1.

Comparison is performed only for those cases which attain structural equilibrium in the experiment.

Calculations from the standard K-E model are also presented. Figure 5 shows the comparison of shear

stress anisotropy, b12. As is to be expected, the experimental data shows increased shear stress magnitudes

for negative curvature factors (destabilizing curvature) and diminished values for positive curvature factors

(stabilizing curvature). The curved algebraic Reynolds stress model captures this variation as a function

of curvature reasonably well. On the whole, the CARSM appears to slightly overpredict the shear stress

levels for destabilizing curvatures and suppress the shear stress a little more than indicated by data for

stabilizing curvatures. The standard K-_ model, on the other hand, predicts much higher levels of shear

stress for all curvatures.

One of the key issues that needs to be predicted with accuracy in curved turbulent flows is the re-
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laminarizationeffectinducedby stabilizingcurvature.In a planehomogeneousshearflow, the turbulence

productionis greaterthan dissipation,P _ 1.8_, resulting in an exponential growth of turbulent kinetic

energy. When the flow encounters convex curvature, the production decreases due to reduced levels of

turbulent viscosity and effective strain rate, resulting in slower growth of the turbulent kinetic energy.

When the convex curvature is strong enough, the turbulence production becomes smaller than dissipation

resulting in the decay of kinetic energy. The value of the curvature factor at which this kinetic energy

decay (interpreted as onset of relaminarization) begins is of great interest. The equilibrium values of P/E

are compared in Figure 6. Whereas both of the models capture the correct trend of decreasing production

with increasing curvature factor, the CARSM values are much closer to the experimental data.

For a fully developed homogeneous curved shear flow with circular streamlines, the weak-equilibrium

assumption invoked in this paper is an exact statement. Since the flow is homogeneous, the neglect of the

turbulent transport term in the ARSM methodology is also completely valid. This begs the question, why

is there still a distinct discrepancy between the model and experimental data? If the experimental results

are reliable, the lack of complete agreement between the experiment and CARSM must be due to the

pressure-strain correlation model. The pressure-strain correlation models have generally been optimized

for non-curved homogeneous flows. If one were to use a nonlinear pressure-strain model, a fully explicit,

self-consistent ARSM may not be possible. This calls for the development of quasilinear pressure-strain

correlation models (of the form given in equation 24) that are optimized for curved homogeneous flows.

(A fully nonlinear model derived specifically for rotating and curved flows is presented in Ristorcelli et al.

[18]).

5 Conclusion

A new weak-equilibrium hypothesis for flows with streamline curvature has been proposed and developed.

This hypothesis ensures Galilean invariance and is also consistent with known physics of circular flows.

In the absence of streamline curvature, the hypothesis reduces to the Rodi weak-equilibrium assumption.

Employing the new assumption, an explicit and self-consistent algebraic Reynolds stress model is derived

Q
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from the Reynoldsstresstransport equation.This modelexpressionis the analyticalfixed point solution

of the anisotropyevolutionequationin two-dimensionalflowsfor a varietyof quasilinearpressure-strain

correlationmodels.ThealgebraicmodelcomputationsarevalidatedagainstReynoldsstressclosuremodel

(RSCM)computationsand experimentaldata (of Hollowayand Tavoularis[17])in curvedhomogeneous

shearflows.The agreementis excellentwith RSCMandadequatewith experimentaldata.
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Table 1: Table of Parameters

CasES

1 2 3 4 5 6 7 8 9 10 11 12

S 4.T 4.6 4.26 5.85 6.54 5.66 4.58 3.89 3.14 4.17 3.63 3.10

C/ -0.033 -0.039 -0.066 -0.079 -0.093 -0.150 0.032 0.040 0.076 0.078 0.10 0.18
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Figure 1: C. as a function of 771 and 7/2.
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